Amazon Ad

Class 10 Maths Chapter 7 Co-ordinate Geometry Notes


CO - ORDINATE GEOMETRY




(1) The abscissa and ordinate of a given point are the distances of the point from y-axis and x-axis respectively.

(2) The coordinates of any point on x-axis are of the form (x,0).

(3) The coordinates of any point on y-axis are of the form (0,y).

(4) The distance between points P(x1,y1) and Q(x2,y2) is given by,
PQ=(x2x1)2+(y2y1)2
For Example:
If P(6,7) and Q(1,5), then distance between these two point is given as follow:
Here, x1=6y1=7
x2=1,  y2=5
Let O be the distance between two points (6,7) and (1,5).
The distance between two point is given by
D=(x2x1)2+(y2y1)2
=(1(6))2+(57)2
=(1+6)2+(12)2
=(5)2+(12)2
=25+144
=169
=13  units
Hence the distance between two points is 13 units.

(5) Distance of a point P(x,y) from the origin O(0,0) is given by OP=x2+y2
For Example: P(6,7) and O(0,0) is given then distance between them i.e. OP is calculated as follow:

(6) The coordinates of the point which divides the join of points P(x1,y1) and Q(x2,y2) internally in the ration m:n are (mx2+nx1m+n,my2+ny1m+n)
For Example: Find the coordinates of the point which is divided the line segment joining (-1,3) and (4,-7) internally in the ratio 3:4.
Solution: Let the end points of AB be A(-1, 3) and B(4, -7).
(x1=1y1=3) and (x2=4y2=7)
Also, m=3 and n=4
Let P(x,y) be the required point, then by section formula, we have x=mx2+nx1m+ny=my2+ny1m+n
            x=3×4+4×(1)3+4y=3×(7)+4×33+4
            x=1247y=21+127
            x=87y=97
Hence, the required point is P(87,97)

(7) The coordinates of the mid-point of the line segment joining the points P(x1,y1) and Q(x2,y2) are (x1+x22,y1+y22).
For Example: P(4,8) and Q(6,10)
MidPoint=(4+62,8+102)
So mid-point of PQ is M(5,9).

(8) The coordinates of the centroid of triangle formed by the points A(x1,y1)B(x2,y2) and C(x3,y3) are (x1+x2+x33,y1+y2+y33)
For Example: Find centroid of triangle whose vertices are (1,4)(1,1)(3,2)
Solution: We know that the coordinates of the centroid of a triangle whose angular points are (x1,y1)(x2,y2) and (x3,y3) are
(x1+x2+x33,y1+y2+y33)
So, the coordinates of the centroid of a triangle whose vertices are (1,4)(1,1) and (3,2) are
(11+33,4123)=(1,13)

(9) The are of triangle formed by the points A(x1,y1)B(x2,y2) and C(x3,y3) is 12|x1(y2y3)+x2(y3y1)+x3(y1y2)| Or, 12|(x1y2+x2y3+x3y1)(x1y3+x2y1+x3y2)|
For Example: Find area of triangle whose vertices are (6,3)(3,5)(4,2)
Solution: Let A=(x1,y1)=(6,3)B=(x2,y2)=(3,5) and C=(x3,y3)=(4,2) be the given points
Area of Î”ABC=12|{x1(y2y3)+x2(y3y1)+x3(y1y2)}|
=12|{6(5(2))3(23)+4(35)}|
=12|{6×7+158}|

(10) If points A(x1,y1)B(x2,y2) and C(x3,y3) are collinear, then
x1(y2y3)+x2(y3y1)+x3(y1y2)
For Example: Let A(2,5)B(4,6) and C(8,8) be the given points.
Three points are collinear if area enclosed by three points is zero.
Area of Î”ABC=12|{x1(y2y3)+x2(y3y1)+x3(y1y2)}|
=12|2(68)+4(85)+8(56)|
=12|2×(2)+4×(3)+8×(1)|
=12|4+128|
=12|12+12|
=0

Post a Comment

0 Comments